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OBJECTIVES

•Apply recent progress in Machine Learning techniques regarding automation 

of DQM scrutiny for HCAL

• To focus on the Online DQM.

• To compare the performance of different ML algorithms.

• To compare fully supervised vs semi-supervised approach.

• Impact the current workflow, make it more efficient and can guarantee that the 

data is useful for physics analysis.
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•Make sure detector behaves well to perform sensible data analysis. 

•Reduce man power to discriminate good and bad data, spot problems, 

save time examining hundreds of histograms.

• By building intelligence to analyze data, raise alarms, quick feedback.

• Implementing the best architecture for neural networks

• Underfitting - Too simple and not able to learn

• Overfitting - Too complex and learns very specific and/or unnecessary features

•There is no rule of thumb

• Many, many, many…… possible combinations.

CHALLENGE
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WHAT IS DATA QUALITY MONITORING (DQM)?

•Two kinds of workflows: 

•Online DQM 

• Provides feedback of live data taking. 

• Alarms if something goes wrong.

•Offline DQM

• After data taking

• Responsible for bookkeeping and certifying the final data with fine time granularity.
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HYPOTHESIS AND PROJECT QUERIES 

Queries 

• Can we make an algorithm that identifies anomalies in the data flow?

Hypothesis 

• We can develop a ML algorithm that takes the images as data and 
determine whether or not an error is occurring.

Rationale

• Since this algorithm takes images as inputs it can learn to compare the 
images given with a baseline and correctly identify patterns and 
deviations from the baseline.
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TOOLS AND DATA PROCESSING

•Working env: python Jupyter  notebook

•Keras (with Tensorflow as backend) and Scikit-learn

• Creation of a model

• Train and test its performance

•The input data consists of occupancy maps

• one map for each luminosity section

• Used 2017 good data and generate bad data artificially
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IMAGE ANALYSIS TERMINOLOGY  

• Hot - image with noisy (red) channels

• Dead - image with inactive (blue) channels

• Good - regular images that are certified for analysis

• Model - an ML algorithm’s structure 

• Loss - number that represents distance from target value
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• Supervised and Semi-Supervised Learning 

• 5x5 problematic region with random location

• 5x5 (readout channels) problematic region with fixed location

•

•

Good Dead Hot

IMAGES AND READOUT CHANNELS USED AS INPUTS FOR THE ML ALGORITHM
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SUPERVISED LEARNING
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• Trained only on good images

• Expected to see better reconstruction 

for good images and a much different 

reconstruction for bad images.

• Bad images have 5x5 bad regions

• Hot

• Dead

• Images have been normalized

• this architecture seems to perform best 

for us.
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SEMI SUPERVISED LEARNING
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ERROR DISTRIBUTION PER IMAGE CLASS



WHAT’S NEXT?

•Why and exactly what is it 

learning?

•Can we make it work with 

something more realistic?

• 1x1 bad region (channel)

• Can it identify what values should be 

expected after each lumi-section?

• Move from artificial bad data to real 

cases of bad data (in progress)
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BACKUP
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HOW TO AUTOMATE THE DATA QUALITY CHECKS?
USE MACHINE LEARNING!

• It’s everywhere now!

• A.I. Learning

• Self-driving cars

• How do Google/Facebook know what you want?

• Face/Handwriting Recognition

• In our case everything is reduced to a 

classification problem

• Anomaly Detection
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Machine Learning libraries

SCIKIT-LEARN

•Pre-defined models

• Logistic Regression

• MLP

•Not much control over the model’s 

architecture

•Very useful for testing performance

KERAS

•Make your own models

• A bit sophisticated 

• Only for making NN

•Neural Networks

• Deep Convolutional

• Best with image recognition
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How to train a model
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SAMPLE IMAGES TO STUDY
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NEW ARCH. 
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ARCHITECTURE
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Auto-Encoder
ARCHITECTURES

•The bottleneck structures 

work using dimensionality 

reduction. 

•We are interested in 

seeing the features 

that are learned at the 

bottleneck stage of the 

AE after a successful 

reconstruction.

•We can use the 

reconstruction loss as a 

discriminant
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REMARKS

•Slight improvement in the performance overall

•This is still a toy model with very specific examples 

•Has not been tested with actual data

•Shows potential but there is room for improvement
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•With this project I’ve noticed

• There are many parameters to consider (architecture, nodes, optimizers)

• There is no rule that let’s you know where to start or how to develop the correct 

model

• There is  a lot of trial and error.

• You have to spend more time building the model than tuning the parameters.

•There have been many other versions of the architectures shown.

• All show similar patterns for results
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USED MODELS

For the models in the supervised approach :
• Loss is categorical cross entropy
For the more complex models 
• Optimizer is Adam or other adaptive optimizers with 

similar results
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